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Grid Definitions 
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nc = 1 
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nm = 16 

C = Coarse (~36 km Radiometer) 
M = Medium (~9 km  Merged Product) 
F = Fine (~3 km Radar) 
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Brightness Temperature 
/ Soil Moisture 
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or 
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Approach 1: 
Begins with L3 
Retrieved Soil 
Moisture Products 

L3_SM_HiRes 

L3_SM_A/P 
Least- 

Squares  
Optimal 
Merger 

L3_SM_40km 

Approach 2: 
• Begins with L1C TB Data 
• Disaggregates TB (using Hi-res sigma0) 
• Retrieval With tau-omega  

L1C_S0_HiRes 
TB 3 km  
Disaggregated 

β(C)  
Linear  
TB-σ0 

L1C_TB  Least- 
Squares  
Optimal 
Merger 

TB 9 km 

L3_SM_A/P tau-omega 
TB SM  

retrieval 

Approaches 
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Advantages: 
1. Least-Squares Beats Down Error (Oversampling) 
2. Provides Confidence Limits on Estimates 

Approach 1 

L3_SM_HiRes 

L3_SM_A/P 
Least- 

Squares  
Optimal 
Merger 

L3_SM_40km 

Collect 
multiple 
scale data 
into an 
observation 
vector: 

Pose Least-Squares Estimation Problem: 

Solution: 

Disadvantages: 
1. Relies on L3 Retrieved SM Products  
2. Needs Unbiased L3 Products  

Find Relation H between all measurements  
(Radar and Radiometer Measurements Z with RMSE  
noise level R) and medium scale estimates of soil 
moisture. 
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2% to 4% RMSE 
Performance* 

Approach 1 Performance Over 
Red-River OSSE (1 Month) With 
Noise Added 

Approach 1 
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Approach 2 

L1C_S0_HiRes 
TB 3 km  
Disaggregated 

β(C)  
Linear  
TB-σ0 

L1C_TB  Least- 
Squares  
Optimal 
Merger 

TB 9 km 

L3_SM_A/P tau-omega 
TB SM  

retrieval 

Advantages: 
1.  Uses L1C_TB Instrument Data directly 
2.  Removes Bias through TB  Aggregation Rule 
3.  Uses Least-Squares to Beats Down Error  
4. Uses same tau-omega Retrieval Code as L3_SM_40km 
5. Can Use PALS TB and σ0 Data to Test   

Disadvantages: 
1. Assumes Linear Relation Between TB and σ0 (dB)   
2. Linear Coefficient is Vegetation-Dependent and 
assumed to be spatially homogeneous within 36 km   

A B 

C 

D 
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 At the radiometer scale-C use time-series of brightness temperature and aggregated radar 
backscatter (log10) to develop linear model.   

Better R2 values are observed for (TB and Mean[log(σvv)]) as compared to (SM and Mean[log(σvv)])  

Linear Relationship between TB and Sigma0 

Part (A) of Approach 2 
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 The fine-scale brightness temperature is taken to 
be the coarse-scale brightness temperature 
adjusted by radar-based spatial anomalies 
(symbolized by δ)as in 

  Parameter β(C) is assumed to be applicable at 
the finer scales, i.e. heterogeneity at larger 
scales and homogeneous within coarse scale 

 Bias is removed from the reconstruction by 
requiring that 

RMSE of 3km Reconstructed TB in the SMAP OSSE. 
Anticipated radar and radiometer noise levels are added. 

Disaggregation of TB using Fine Scale Sigma0 

Part (B) of Approach 2 
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RMSE of 9km Reconstructed TB in the OSSE.  
Anticipated radar and radiometer noise levels are added. 

Optimal Merger of Coarse Scale TB with Fine Scale TB 

Part (C) of Approach 2 

Coarse Scale TB (~36 km) blended with fine scale TB (~3 km) using optimal merger to obtain medium 
resolution TB (~9 km) 
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RMSE of 9km Reconstructed soil moisture in the OSSE using Single-Channel 
Radiometer Algorithm. Anticipated radar and radiometer noise levels are added. 
The errors are largest where there is significant vegetation (East) or where β 
could not be estimated well due to persistent soil dryness (West). 

The radiometer retrieval algorithms (see L3_40km_SM) are now applied to 
retrieve soil moisture.  Required ancillary data are provided at 9 km. 

Soil Moisture Performance at Scale of L3_SM_A/P 

Part (D) of Approach 2 
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Applica'on of Approach 2 to Airborne 
Passive/Ac've L‐/S‐band (PALS) 
microwave data from SMEX02 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Gridding of PALS Flight lines Data 

TB data gridded at 4 km, and Sigma0 gridded at 0.4 km 

Flight lines 
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PALS Explained Variance 

7-days of SMEX02 PALS TB and σ0 

TB aggregated to form the same 
scale differences as with SMAP  
(TB ~4 km and σ ~ 0.4 km) 

For 7-days the R2 field has 
Median value of 0.75 

 (Max value of 0.91) 
  (Min value of 0.44)  

Evaluation of Linear Relationship Between TB 
and Sigma0 for PALS Data 

TB (h-pol) Sigma0 (vv) 

R2 
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Comparison of Reconstructed TB at 
0.8 km with Gridded PALS data 

High errors are observed for  
pixels having trees with VWC > 5 kg/m2   

Reconstructed TB at 0.8 km using  Approach 2 PALS TB gridded at 0.8 km  

Errors in reconstructed TB at Res: 0.8 km 

July 02, 2002 

TB Error [K] at ~0.8 km 
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RMSE = 3.79 [%Vol.] 

Using single channel algorithm (tau-
omega model) disaggregated TB (h-pol) at 
~0.8 km is  inverted to volumetric soil 
moisture and compared with the in situ 
field averaged soil moisture for the 
sampling sites. An RMSE of 3.79 [%Vol.] 
is obtained. 

July 02, 2002 

 Soil moisture sampling site 

Soil moisture Retrieval from Reconstructed TB at 0.8 km  

Soil Moisture [%Vol.] inverted from reconstructed TB (~0.8 km) 
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Conclusion 

1.  Feasibility of combined active/passive algorithm approach has been demonstrated using 
simulated and PALS SMEX02 dataset 

2.  Retrieval accuracy within 4 [%Vol.] for VWC < 5 kg/m2 at 10 km spatial resolution is 
achievable 

Issues 

1.  Simulated data (OSSE) do not test every assumption/approximation in the algorithm. 
However, PALS data are used to verify algorithm assumptions (e.g., linear TB-log[σ]  
relationship assumption). 

2.  Optimization of algorithm details is needed (e.g., time-horizon for β-estimation; treatment 
of sub-40km heterogeneity through relating β to ancillary data). 

3.  Implementation of algorithm options over larger domains (e.g., CONUS) is in progress  
with inclusion of appropriate errors and biases in the inputs due to satellite orbital 
sampling. 

4.  Additional time series approaches are being considered to improve algorithm  

Conclusion and Issues 
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Backup 
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Mapping radars are capable of a very high spatial resolution but, since 
radar backscatter is highly influenced by surface roughness, vegetation 
canopy structure and water content, they have a low sensitivity to soil 
moisture. Various algorithms for retrieval of soil moisture from radar 
backscattering have been developed, but they are only valid in low-
vegetation water content conditions. In contrast, the spatial resolution of 
radiometers is typically low, the retrieval of soil moisture from radiometers is 
well established and radiometers have a high sensitivity to soil moisture. To 
overcome the individual limitations of the passive and active approaches, 
the Soil Moisture Active and Passive (SMAP) mission is combining the two 
technologies. The accurate retrievals of soil moisture at the coarse 
resolution of the radiometer need to be combined with the relatively less 
accurate soil moisture information from the high resolution radar 
measurements in order to yield an intermediate scale soil moisture data 
product. The merging of radar and radiometer measurements and retrieved 
information yields the SMAP Hydrometeorology Product at intermediate (10 
km) scale called L3_SM_A/P.  

Product Objectives 
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L1C_S0_HiRes 

   Land/Sea Mask 
   Swath Position 
   Refresh Date Flag  

L3_SM_A/P 
   Posterior Error Variance 
   # of Radar Measurements 
   Refresh Date Flag 

β(C) 

Data Flow: L3_SM_A/P Time-Series Algorithm 

Other Inputs: 
1. Bias error statistics of input products 
2. Squared error statistics of input products 

Optimal 
Linear  
Merger 

L3_SM_HiRes 

Refresh Date Flag   

L3_SM_40km 

Approach 3 
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Radiometer 
RMSE=2% 

Radiometer 
RMSE=3% 

Radiometer 
RMSE=4% 

Approach using L3_SM_40km  

L3_SM_A/P RMSE [Vol.%] 

Pixelwise RMSE at Res: ~9 km 
for  input Radiometer  RMSE: 4 [%Vol.]  

Output from 4 month OSSE data 

The results show that RMSE  
of L3_SM_A/P is  always  
dependent and greater than  
on the input  RMSE  
of L3_SM_40km  
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